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Combined result and associated uncertainty from
interlaboratory evaluations based on the ISO Guide

R. Kacker, R. Datla and A. Parr

Abstract. We address the problem of determining the combined result and its associated uncertainty in the
measurement of a common measurand by a group of competent laboratories. Most data analyses of interlaboratory
evaluations are based on the assumption that the expected values of the individual laboratory results are all equal
to the value of the common measurand. This means that the laboratory results are subject to random effects
only with respect to the value of the measurand. This assumption is frequently unjustified. We use the more
realistic assumption that the laboratory results are subject to both random and systematic effects with respect
to the value of the measurand. In this case, the value of the measurand may fall anywhere within the range of
results. Therefore, a combined result and its associated standard uncertainty that place a non-negligible fraction
of the results outside the 2-standard-uncertainty interval are unsatisfactory representations of the value of the
common measurand provided by the set of laboratory results. The more realistic assumption requires us to deal
with the uncertainty arising from possible systematic effects in the laboratory results. Following the approach of
the ISO Guide to deal with systematic effects, we propose a three-step method to determine a combined result
and its associated standard uncertainty such that the 2-standard-uncertainty interval would include a sufficiently
large fraction of the results. When the interlaboratory evaluation is an International Committee for Weights and
Measures (CIPM) key comparison, we suggest that the combined result and its associated standard uncertainty
determined by the three-step method be identified with the key comparison reference value and its associated
standard uncertainty. These quantities can then be used to specify the degree of equivalence of the individual
laboratory results. We illustrate the three-step method by applying it to the results of an international comparison of
cryogenic radiometers recently organized by the Consultative Committee for Photometry and Radiometry (CCPR).

1. Introduction

We address the objective of determining the combined
result and its associated standard uncertainty in the
measurement of a common measurand by a group of
competent laboratories. We assume that all laboratory
results denoted by , ..., are valid. Any suspect
results have been withdrawn or revised in accordance
with the protocol of the interlaboratory evaluation.
As far as possible, recognized effects of different
experimental conditions in the participating laboratories
and recognized changes in the value of the common
measurand, , have been accounted for in results

, ..., and their associated standard uncertainties
, ..., . The combined result, , and its

associated standard uncertainty, , represent the
information about provided by , ..., and

, ..., .
We follow the philosophy, terminology and

notation of the Guide to the Expression of Uncertainty
in Measurement, referred to here as the ISO Guide
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[1], published by the International Organization for
Standardization (ISO) and supported by seven interna-
tional scientific organizations. The following terms are
defined in Appendix 1 of this paper: measurand, result
of a measurement, uncertainty of measurement, standard
uncertainty, combined standard uncertainty, expanded
uncertainty, coverage factor, expanded uncertainty
interval, and measurement equation. We use a coverage
factor of two and refer to the expanded
uncertainty interval as a 2-standard-uncertainty interval.
When the distribution represented by a result and
its associated standard uncertainty is taken to be
normal (Gaussian), the 2-standard-uncertainty interval
represents about 95 % level of confidence or coverage
probability.

At a meeting held in Paris on 14 October 1999, the
directors of the national metrology institutes (NMIs)
of thirty-eight Member States of the Metre Convention
and representatives of two international organizations
signed a Mutual Recognition Arrangement (MRA) [2].
The objectives of the MRA are as follows:

• to establish the degree of equivalence of national
measurement standards maintained by NMIs;
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• to provide for the mutual recognition of calibration
and measurement certificates issued by NMIs;

• thereby to provide governments and other parties
with a secure technical foundation for wider
agreements related to international trade, commerce
and regulatory affairs.

Key comparisons are special international interlabora-
tory evaluations that serve as the technical basis of the
MRA. Key comparisons carried out by the Consultative
Committees of the CIPM or the Bureau International
des Poids et Mesures (BIPM) are referred to as
CIPM key comparisons. The outputs of a CIPM key
comparison are as follows: a key comparison reference
value (KCRV) (assigned to the common measurand)
accompanied by its uncertainty and the degrees of
equivalence of all individual measurement standards
(laboratory results) accompanied by their uncertainties.

Most data analyses of interlaboratory evaluations,
including CIPM key comparisons, are based on the
following assumption.

Assumption I: The expected values of results
, ..., are all equal. The common expected

value is equal to the value of the common
measurand. This means that results , ..., are
subject to random effects only with respect to the
value of the measurand.
Random effects arise from unpredictable or

stochastic temporal and spatial variations of influence
quantities. An influence quantity affects the result of
the measurement but is not the measurand. Independent
measurements reduce the uncertainty arising from
random effects. Systematic effects are effects of
influence quantities that give rise to uncertainty
that cannot be reduced by more measurements.
Assumption I is frequently unjustified because it
presumes that results , ..., are completely free of
systematic effects. We use the following more realistic
assumption.

Assumption II: The expected values of results
, ..., may not all equal the value

of the common measurand. This means that
results , ..., are subject to both random and
systematic effects with respect to the value of
the measurand. It is believed, based on scientific
judgement about the method(s) of measurement,
that the systematic effects are such that the value

of the measurand is either somewhere in the
range of results , ..., or in the vicinity of this
range when is small.
According to Assumption I, the unknown value

of the measurand is believed to be close to the “best
combined result” determined by statistical analysis. The
results that end up outside the 2-standard-uncertainty
interval associated with the combined result are believed
to deviate because of random error. Therefore, the
fraction of the results excluded by the 2-standard-
uncertainty interval is of no consequence.

According to Assumption II, the unknown value
of the measurand may be anywhere in the range of

results , ..., , or even outside this range when is
small. Therefore, a combined result and its associated
standard uncertainty that place a non-negligible fraction
of the results outside the 2-standard-uncertainty interval
are unsatisfactory representations of the information
about provided by , ..., .

Let us consider an example. Figure 1 displays
a subset of the results from a recent interlaboratory
evaluation involving seventeen national metrology
institutes. Let us suppose, for illustration, that the
eighteen circles in Figure 1 are the results of direct
measurements of a common measurand of value
by the seventeen laboratories and the arithmetic mean
of these results. (Section 5 shows that the results are
not direct measurements of a common measurand.)
The arithmetic mean of the seventeen results is the
uncorrected combined result (u.c.r.). The associated
2-standard-uncertainty intervals are shown as vertical
bars. The centre line is drawn at the arithmetic
mean. The dashed lines are drawn at the limits of
the 2-standard-uncertainty interval associated with the
arithmetic mean. The seventeen results (circles) are the
best estimates of the common value of the measurand
provided by highly competent laboratories. We note
that the 2-standard-uncertainty interval
associated with the arithmetic mean A excludes
five (i.e. 29 %) of the seventeen results , ..., .
Also, several other results are on the borderline.
Similarly, the 2-standard-uncertainty interval associated
with the weighted mean, with weights proportional to
the reciprocals of the squared standard uncertainties,
clearly excludes eight (i.e. 47 %) of the seventeen
results. According to Assumption II, the unknown

Figure 1. Individual laboratory results and uncorrected
combined result A with associated 2-standard-uncertainty
intervals. Table 1 lists the laboratories corresponding to
indices 1, ..., 17 and u.c.r. stands for uncorrected combined
result. The horizontal centre line is drawn at the uncorrected
combined result A. The dashed lines are drawn at the limits

A – 2 A and A + 2 A of the 2-standard-uncertainty
interval associated with A.
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value may be anywhere in the range of the
seventeen results. Therefore, the 2-standard-uncertainty
intervals associated with the arithmetic mean or the
weighted mean are unsatisfactory representations of the
information about provided by the seventeen results
and their associated uncertainties.

Assumption II requires us to deal with the
uncertainty about the value of the common
measurand arising from possible systematic effects
in results , ..., . Following the ISO Guide on
dealing with systematic effects, we propose a three-
step method to determine a combined result and
its associated standard uncertainty such that
the 2-standard-uncertainty interval would
include a sufficiently large fraction of the results. In the
case of a CIPM key comparison, we suggest that the
combined result and its associated standard uncertainty
be identified with the KCRV and its associated standard
uncertainty.

In Section 2, we discuss the relevant literature
and give an outline of the proposed three-step method.
Section 3 gives details of the three-step method and
Section 4 discusses how the combined result and its
associated standard uncertainty determined by the three-
step method can be used to specify the KCRV and
the degree of equivalence in CIPM key comparisons.
In Section 5, we illustrate the three-step method by
applying it to the results of an international comparison
of cryogenic radiometers recently organized by the
CCPR. A summary is given in Section 6.

2. Literature review and proposed three-step method

The early literature on interlaboratory evaluations
includes Birge [3] in Physical Review and Cochran [4]
in Journal of the Royal Statistical Society. Since Birge
and Cochran, most of the literature on interlaboratory
evaluations deals with random effects only. We
propose an approach that addresses both random
and systematic effects in the laboratory results. Two
previous publications that account for the uncertainty
arising from possible systematic effects are Schiller
and Eberhardt [5] and Levenson et al. [6]. Schiller
and Eberhardt modified the method of Paule and
Mandel [7]. These articles were primarily written to
assign a certified value and its associated uncertainty
to a standard reference material (SRM) from multiple
methods of measurement. The problem they address is
similar to our problem where the measurement methods
correspond to the laboratories.

Paule and Mandel address the case where the
laboratory results , ..., are arithmetic means of
independent measurements. The number of measure-
ments made in each laboratory may differ. They assume
that the laboratory results , ..., are independent
random variables with the same expected value that
is equal to the unknown value of the common
measurand but with different standard deviations. This

accords with Assumption I. They model the variances
(squared standard deviations) of the laboratory results as
consisting of two parts: a common between-laboratory
variance and different within-laboratory variances.
They estimate the within-laboratory variances as the
experimental (sample) variances of the arithmetic means

, ..., . Then they estimate the between-laboratory
variance as that quantity which makes the square
of the Birge ratio equal to one. (We describe the
Birge ratio in Section 3.) Such estimate of between-
laboratory variance is determined by iteration, starting
with a guesstimate. The weights in the Birge ratio are
iterative estimates of the reciprocals of the variances
of , ..., . In most cases only a few iterations are
required. The final estimate of the between-laboratory
variance and the estimates of the within-laboratory
variances give the estimated variances of , ..., .
Paule and Mandel recommend a weighted mean of
the laboratory results , ..., as the combined result
denoted by C. The weights are proportional to the
reciprocals of the estimated variances of , ..., . For
determining the standard uncertainty associated with
the combined result C, they treat the weights used in

C and the estimated variances of results , ..., as
constants.

Rukhin and Vangel [8] show that the Paule-Mandel
result may be interpreted approximately as the maximum
likelihood estimate based on the one-way random
effects analysis of variance (ANOVA) model with
normally distributed within-laboratory and between-
laboratory effects, unequal numbers of measurements,
and different within-laboratory standard deviations.
Thus, Rukhin and Vangel put Paule-Mandel on a solid
statistical foundation. An expanded uncertainty interval
determined by the method of Paule and Mandel may
exclude a non-negligible fraction of results , ..., .

Motivated by the desire to include all laboratory
results, Schiller and Eberhardt [5] modified the
expanded uncertainty interval associated with the Paule-
Mandel weighted mean C. They estimate the expanded
uncertainty arising from random error in the Paule-
Mandel weighted mean C from the estimates of within-
laboratory standard deviations. Then they estimate the
extent of possible systematic error in the Paule-Mandel
weighted mean C and refer to it as the bias allowance.
They set the bias allowance as the maximum absolute
deviation max{| – C|, | – C|, ..., | – C|} of
any laboratory result , ..., from C. The bias
allowance recognizes that the unknown value may
be close to any one of results , ..., . Schiller
and Eberhardt add the bias allowance to the expanded
uncertainty arising from random error. The expanded
uncertainty interval so obtained is sufficiently wide
to include all laboratory results. This approach and
its unpublished modifications have often been used to
assign a certified value and its associated expanded
uncertainty to SRMs at the National Institute of
Standards and Technology (NIST). However, the
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Schiller-Eberhardt procedure is not consistent with the
ISO Guide and NIST TN-1297 [9].

Motivated by the desire to be consistent with the
ISO Guide, Levenson et al. [6] address the case of
two laboratories where the arithmetic mean of the two
results is used as the combined result. (They refer
to it as a two-method problem and suggest that their
solution can be used even when the number of methods
is three or four. However, they do not give details for
doing this.) This method is often used at the NIST to
assign a certified value and its associated uncertainty
to the SRMs from two independent methods. Levenson
et al. use the arithmetic mean A of
the two results and as the combined result.
They denote the expected value of the combined
result A by , and define
the standard uncertainty A associated with A

as a statistical estimate of the standard deviation
A . The uncertainty A represents the uncertainty

arising from random effects. Levenson et al. model
the value of the common measurand denoted by
as + , where is the bias (systematic error)
in A. The existence of bias means that at least
one of the expected values and is not
equal to the value of the measurand. This accords with
Assumption II. In order to determine an estimate of
the common measurand and the associated standard
uncertainty, Levenson et al. assume that is a random
variable with rectangular or normal distribution having
the expected value and the standard deviation

. They use the spread of the results and to
quantify . As the expected value is assumed
to be zero, the arithmetic mean A is an estimate
of both and . The uncertainty associated with A

treated as an estimate of has two components: A

and , which are combined by the root-sum-of-
squares method. Thus the Levenson et al. estimate
of the common measurand is the arithmetic mean

A with standard uncertainty � A . The
corresponding expanded uncertainty interval includes
both and . Levenson et al. seem to treat

A as an unknown constant. Their model
+ and the assumption that is a random

variable with expected value and standard
deviation imply that is a random variable
with expected value and standard deviation

. However, Levenson et al. seem to
conclude that � A . We note that
their conclusion would follow immediately from their
model + if they treated not only but also as
an independent random variable with expected value A

and standard deviation A . Levenson et al. discuss
a Bayesian analysis in Appendix B of their paper.

We address the general case where the number
of laboratories is arbitrary and the combined result

may be based on the arithmetic mean or a weighted
mean. We seek a combined result for the value
of the common measurand and the uncertainty

such that the 2-standard-uncertainty interval
would include a sufficiently large fraction of results

, ..., . In order to determine such and , we
need to account for the uncertainty arising from possible
systematic effects in results , ..., with respect to
the value of the measurand.

Until the publication of the ISO Guide and NIST
TN-1297, there was no generally accepted approach
to account for the uncertainty arising from systematic
effects. The ISO Guide (Section 3.2) and NIST TN-
1297 (Section 5.2) recommend that each result should
be corrected for all recognized systematic effects and
that every effort should be made to identify such
effects. The uncertainty associated with each result
should include both the uncertainties associated with
the corrections applied for systematic effects and the
uncertainty arising from random effects. The correction
applied for a systematic effect and the uncertainty
associated with the correction are generally determined
from a probability distribution that represents belief
about reasonable correction. The ISO Guide further
recommends that all uncertainty components, whether
arising from random effects or from corrections for
systematic effects, should be expressed as standard
deviations. The result of a measurement (including
corrections for systematic effects) is determined from
a measurement equation. The combined standard
uncertainty (including both random and systematic
uncertainties) is determined from the law of propagation
of uncertainties (also called the root-sum-of-squares
method). The law of propagation of uncertainties is
derived from a first-order Taylor series approximation
of the measurement equation. When the law is believed
to be inadequate, the combined standard uncertainty
may be determined from a numerical simulation of the
measurement equation.

We propose a three-step method based on the ISO
Guide.
Step 1: Determine the uncorrected combined result C

and its associated standard uncertainty C . Assess
the need for correcting the result C. The uncorrected
combined result C is generally the arithmetic mean or a
weighted mean of the individual results , ..., . De-
termine the corresponding standard uncertainty C

from the uncertainties , ..., associated with
results , ..., using the law of propagation of
uncertainties. (The uncertainty C should include
covariance terms when some of the laboratory values
are correlated.) Assess the need for correcting the result

C for a possible difference between C and the value
of the measurand. Such correction is needed whenever
the interval C ± C excludes a non-negligible
fraction of the results.

Step 2: Determine the correction to be applied to
C and the standard uncertainty associated with the

correction. Following the ISO Guide (Section 4.3),
a probability distribution is used to determine the
correction to be applied and the uncertainty associated
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with it. The probability distribution represents belief
about reasonable correction. We discuss two simple and
useful distributions. The parameters of the probability
distribution of correction are determined from the range
of the deviations C , C , ..., C of
the results , , ..., from the uncorrected combined
result C.

Step 3: Determine the corrected combined result and
its associated combined standard uncertainty. The
corrected combined result is obtained by applying
a correction to C. The associated standard uncertainty

is determined by combining the uncertainty C

and the uncertainty associated with the correction
using the law of propagation of uncertainties. With
a judiciously specified probability distribution for the
correction, the 2-standard-uncertainty interval

would include a sufficiently large fraction of
results , ..., . Thus and would represent,
better than C and C , the information about
provided by results , ..., . The uncertainty
about the value of the common measurand is greater
than the uncertainty C because Assumption II
presumes less than Assumption I.

We use upper-case symbols, such as , , ..., ,
and , , ..., for random variables that represent
states of knowledge. The symbol is used for the
unknown value of the measurand as well as the
random variable that represents the state of knowledge
about the value of the measurand. We use lower-
case symbols, such as , , ..., , C, A, W,

, , ..., and , ..., , for known quantities,
evaluated from statistical data (Type A) and/or scientific
judgement (Type B), and for random variables with
sampling distributions from the measurement process.
Greek symbols, such as , , and , may
be unknown parameters, set parameters or random
variables representing states of knowledge. The context
makes clear the way in which a symbol is being used.
The statistical functions , , and are
respectively the expected value, the variance, and the
standard deviation of the argument denoted here by
random variable .

3. Details of three-step method

Frequently, one or more of the results from
interlaboratory evaluations are relatively remote from
the rest and are referred to as discrepant. A set of
laboratory results that contains discrepant results is said
to be inconsistent. A classic method of checking the
consistency of a set of interlaboratory results is the
Birge ratio test [3] (see, for example, Taylor et al. [10]
and Mohr and Taylor [11]).

3.1 Birge ratio test of consistency

The Birge ratio denoted by B is defined as
B � , where , ...,

are the laboratory results and W is the weighted
mean, , with weights

for , ..., . Taylor et al. give a brief and perceptive
description of the Birge ratio and its original interpreta-
tion. Appendix 2 of this paper describes the Birge ratio
as a statistical estimate. Here we discuss its use.

The statistical model underlying the Birge ratio
B is that the laboratory results , ..., are inde-

pendently distributed random variables with a common
unknown expected value denoted by but
with different known standard deviations

for , ..., . Consistency means that results
, ..., and standard uncertainties , ...,

fit the Birge ratio model and inconsistency means
that they do not fit the model, i.e. some results are
discrepant. It can be shown that when results , ...,
and standard uncertainties , ..., fit the Birge
ratio model, (see Appendix 2). Therefore,
the values of B that are close to 1 or less suggest that
results , ..., are consistent. The values of B that
are much greater than 1 suggest that results , ...,
are inconsistent.

A discrepant result may be erroneous or an
outlier. An outlier is a discrepant result that has
not been determined to be erroneous. All discrepant
results should be critically investigated according to
the protocol of the interlaboratory evaluation. Results
determined to be erroneous should be revised or
removed. Often, the resources and time available for
investigations are limited and some discrepant results
may remain as outliers. The combined result and
the uncertainty should account for the uncertainty
arising from such outliers.

In the Birge ratio test, the standard uncertainties
, ..., are treated as known parameters

representing the standard deviations of laboratory
results , ..., . That is, the Birge ratio test requires
an implicit assumption that each of the standard
uncertainties , ..., is reliable. When this
assumption is not well justified, the conclusion of the
Birge ratio test should not be taken too seriously.
The best statistical estimate of in the Birge ratio
model is the weighted mean ,
where for , ..., . Again, this
requires the assumption that each of the uncertainties

, ..., is reliable.
The Birge ratio consistency does not affirm

Assumption I because the common expected value in
the Birge ratio model need not be the unknown value

of the measurand. The first part of Assumption I,
that “the expected values of results are all equal” is
a statement about consistency. The second part, that
“the common expected value is equal to the value of
the common measurand” is a statement about accuracy.
Consistency does not imply accuracy.

3.2 Corrected laboratory results , ..., and
associated standard uncertainties , ...,

According to the ISO Guide, the individual laboratory
results , ..., should be corrected for all recognized
systematic effects and their associated standard
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uncertainties , ..., should include the
uncertainties arising from random effects and the
uncertainties associated with the corrections. Here is
the procedure.

We use lower-case symbols , ..., to denote the
arithmetic means of the raw measurements denoted by
{ }. The laboratory results , ..., are obtained
from the arithmetic means , ..., by applying
corrections for recognized systematic effects.

In classical frequentist statistics, the uncertainty
from random effects based on a series of independent
measurements { } in a particular laboratory, , for
, , ..., , is determined as follows. The measurements

{ } for fixed are modelled as , where
, , and , ..., . Then
and . Let

and . Then ,
, � ,

(see, for example, Hoel [12]). Thus is an estimate
of and � is an estimate of . In classical
frequentist statistics, one takes the estimate � of

as the standard uncertainty of . When
the measurements { } can be assumed to be normally
distributed, the ratio � has Student’s
-distribution with degrees of freedom. This

result is used to form a confidence interval for .
Here is interpreted as an unknown constant and the
confidence interval is random.

In Bayesian statistics, one thinks in terms of
the state of knowledge – expressed as a probability
distribution – about the parameters and treated
as random variables. One starts with prior distributions
for and that represent the states of knowledge
about them before measurements are taken. The
measurements { } are used to update the prior
distribution to obtain a posterior distribution. The
mechanism for updating is Bayes theorem (see,
for example, Box and Tiao [13]). Negligible prior
knowledge about and is expressed by using
non-informative prior distributions. When the prior
distributions are non-informative and { } are normally
distributed, the posterior distribution of the ratio

� turns out to be Student’s -distribution
with degrees of freedom [13]. Here is
interpreted as a random variable and and �
are known quantities. It follows that and

� � , provided
that (see, for example, Evans et al. [14]).
Thus in Bayesian statistics, the arithmetic mean is

and � � is .
So in Bayesian statistics, one would take �

� as the standard uncertainty
associated with the arithmetic mean . The factor

� built into the Bayesian standard
uncertainty accounts for the uncertainty that arises when

is small.
The ISO Guide does not cite the Bayesian result

that, given and � , the ratio �

has Student’s -distribution. However, Section 6.2.2 of
the Guide mentions the distribution characterized by
the result of measurement and its combined standard
uncertainty and defines the coverage probability or the
level of confidence as the fraction of the distribution
covered by the expanded uncertainty interval. This
definition corresponds to the Bayesian viewpoint of
treating as a random variable representing the state of
knowledge. We have adopted this Bayesian viewpoint.
Thus we interpret the arithmetic mean as the
expected value with standard uncertainty

� � for ,
, ..., . In the rest of this section, the arithmetic means
, ..., , uncertainties , ..., , laboratory

results , ..., , and uncertainties , ...,
are known quantities rather than random variables, with
one exception. When we discuss the suitability of the
weighted mean and the median as a reference value,
results , ..., are random variables.

A measurement equation is used to incorporate
corrections for recognized systematic effects. Let ,

, ... be independent corrections for recognized
systematic effects in . Then the measurement equation
for the random variable that represents the state
of knowledge about the value of the common
measurand in laboratory is

, where all terms are random variables
representing states of knowledge. Let
and for , , ..., and ,
, ... . The random variables , , ... and their

expected values , , ... are both referred to as
corrections. The corrected result for the laboratory
is with
uncertainty � . The result

includes the corrections , , ... applied for
recognized systematic effects in the arithmetic mean
of the raw measurements { }. The uncertainty
includes the uncertainty arising from random
effects and the uncertainties , , ... associated
with the corrections for , , ..., .

The random variables , ..., represent the
states of knowledge in the laboratories about the
value of the common measurand. We refer to them
as laboratory values of the measurand. The result
from laboratory , for , , ..., , is identified with
the expected value and the uncertainty
is identified with the standard deviation . Often,
uncertainty is expressed as relative standard uncertainty
denoted by r , where r provided
that is not zero for , , ..., . The relative
standard uncertainty has the advantage of being
a dimensionless quantity frequently expressed as a
percentage.

3.3 Uncorrected combined result and associated
standard uncertainty

We use the symbol C to represent a func-
tion C , ..., of the laboratory values
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, ..., that is used as the uncorrected combined
value of the common measurand. The function

C , ..., is a measurement equation that
defines C. Following the ISO Guide (Section 4.1), the
corresponding uncorrected combined result denoted by

C is defined as C , ..., . We assume that the
laboratory values , ..., are mutually uncorrelated.
Then, following the ISO Guide (Section 5), the
associated standard uncertainty C is determined
from the law of propagation of uncertainties:

, where are the
partial derivatives of the function C , ...,
with respect to , ..., evaluated at , ..., ,
respectively. (When some of the laboratory values

, ..., are correlated, the expression for C

should include covariance terms as discussed in the
ISO Guide.) The combined result C is identified with
the expected value C and the standard uncertainty

C is identified with the standard deviation C .
It is most convenient to choose the function

C , ..., to be a linear function
for some specified weights , ..., ,

where . In this case, the combined
result is equal to the expected
value C and the squared standard uncertainty

is
equal to the variance C , which is the square
of standard deviation C . Two particular choices
for the combined value C are the arithmetic mean

A and the weighted mean W with weights
, ..., proportional to the reciprocals of the

squared standard uncertainties. For the arithmetic
mean , the combined result is

with squared standard uncertainty
. (In the special case

, the squared standard
uncertainty (variance) A reduces to the familiar
expression .) For the weighted mean

with weights ,
for , , ..., , the combined result is

with squared standard uncertainty
.

If some of the self-declared uncertainties
, ..., are believed to be underestimated, a

weighted mean with subjectively determined
weights , ..., , where , may be used
as the uncorrected combined result C. Sometimes,
the experts involved in the interlaboratory evaluation
choose to adjust the understated uncertainties. This
amounts to using a weighted mean with subjectively
determined weights ,
where , ..., are adjusted uncertainties, for

, , ..., .
When one or more of the results , ..., are

judged to be outliers, a weighted mean with subjectively
determined weights may be used as the uncorrected
combined result C. Outliers are troublesome because
they distort the arithmetic or weighted mean and the

associated standard uncertainty. It is not easy to deal
with outliers. A practical approach is to use a weighted
mean that assigns zero weight to the outliers, then
use them to determine the correction and uncertainty
associated with the correction in Step 2 of the three-step
method.

We do not recommend the weighted mean
with weights ,

for , , ..., as the reference value or the
uncorrected combined result from those interlaboratory
evaluations where not all self-declared uncertainties

, ..., are reliable. When uncertainties
, ..., are equal to the standard deviations

of results , ..., treated as random variables,
the standard deviation (uncertainty) of the weighted
mean W is smaller than that of the arithmetic
mean A. This is the motivation for using the weighted
mean W. In practice, uncertainties , ...,
are estimates evaluated from statistical data (Type A)
or scientific judgement (Type B). When some of
these estimates are poor, the standard deviation
(uncertainty) of the weighted mean W may actually
exceed that of the arithmetic mean A. A self-
declared uncertainty may be poor because the
uncertainty budget was not comprehensive. A Type A
uncertainty may be unreliable because only a few
independent measurements were made (see, for
example, ISO Guide, Annex E.4). A Type B evaluation
may be unreliable because the specified probability
distribution under-represents or over-represents the
uncertainty. Furthermore, if lacking thorough scientific
and experimental knowledge, some laboratories may
overstate or understate the uncertainties associated with
their results.

We do not recommend the median of results
, ..., as the reference value or the uncorrected

combined result from interlaboratory evaluations
because it may not be statistically justified and is
incompatible with the ISO Guide. Some (see, for
example, [15]) suggest that when one or more of
the results are judged to be discrepant, the median
of results , ..., should be used as the reference
value because it is a robust statistic unaffected by
a few discrepant results. When results , ...,
treated as random variables have the same sampling
distribution, the median is indeed a robust statistic
(see, for example, Rousseeuw [16]). However, the
standard deviations of , ..., may not be equal.
That is, results , ..., may not have the same
distribution, so the median may not be justified. The
expression of uncertainty associated with the median
of results , ..., is a multiple of the median of
the absolute deviations of results , ..., from their
median. However, the standard uncertainty as defined
by the ISO Guide is expressed as a standard deviation.
So the median is incompatible with the Guide. Also,
the standard uncertainty associated with the median of
results , ..., cannot be determined from the law of
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propagation of uncertainties. The only practical way to
determine the standard uncertainty associated with the
median of results , ..., is numerical simulation of
the median function C , ..., .

3.4 Corrected combined result and associated
standard uncertainty

According to Assumption II, a combined result C (such
as the arithmetic mean or a weighted mean) and its
associated uncertainty C that place a non-negligible
fraction of the results outside the 2-standard-uncertainty
interval C ± C are unsatisfactory representa-
tions of the information about provided by , ..., .
The inadequacy of such C and C can be remedied
by incorporating a correction for the difference between

C and through the measurement equation:
C + , ..., , where , ...,

are the laboratory values, C is the
uncorrected combined value, and is the correction, a
random variable whose distribution represents belief
about possible values of the difference C ,
arising from systematic effects in results , ..., .
According to Assumption II, the range of results

, ..., suggests possible values of and hence of
the difference C . By definition, is independent
of C. Let and for some
constants and . The random variable and its
expected value are both referred to as a correction.
The measurement equation C + defines the
corrected combined result for as C + with
standard uncertainty � C + . The
result is identified with and the uncertainty
is identified with . As the measurement equation

C + is linear, actually equals and
equals .

3.5 Specification of correction and
associated standard uncertainty .

The proposed three-step approach to determine the
corrected combined result and its associated standard
uncertainty is generic and permits the use of
any probability distribution for correction that has
finite expected value and finite standard deviation. As
zero correction is reasonable and infinite correction is
meaningless, we believe that the limits of the probability
distribution for correction should be bounded and
the interval between the limits should include zero.
We use the symbols and for the limits of
the distribution of , where and .
We discuss two simple distributions on the interval

: a rectangular and a triangular distribution.
The expected value, variance and standard deviation
of a rectangular distribution on the interval
are , and

� , respectively (see, for example,
Evans et al. [14]). When , they reduce

to , and , and � ,
respectively. The expected value, variance and standard
deviation of a triangular distribution on the interval

are ,
and �

, respectively (see Appendix 3). When
, the triangular distribution is asymmetric. Figure 2

shows the probability density function of an asymmetric
triangular distribution. (Ayyangar [17] is credited
for introducing asymmetric triangular distribution.
However, we have parameterized it differently.) When

, the expected value, variance and
standard deviation of a triangular distribution reduce
to , and � ,
respectively.

Figure 2. Probability density function (p.d.f.) of asymmetric
triangular distribution � � in relation to the
combined result C, the smallest result ��� min{ �,
�, ...,

�
}, and the largest result ��� max{ �,

�, ...,
�

}.

We suggest and
, where min{ , ..., } and

max{ , ..., } as default limits for the
distribution of . However, one may choose a wider
pair of limits when plausible values of are believed
to exist outside the range of results , ..., . Such
may be the case, for example, when is small.

Consider the following three common situations:

(a) All values of in the range of results , ...,
are believed to be equally probable.

(b) The values of near the middle of the range of
results , ..., are believed to be more probable
than the values near the ends.

(c) The 2-standard-uncertainty interval is
required to include a specified range L, H

of results , ..., , where . In
particular, L could be the minimum result
and H the maximum result .
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The adequacy of the correction and the
uncertainty is determined by three generic
criteria:

(a) The 2-standard-uncertainty interval
should include a sufficiently large fraction of results

, ..., .

(b) The absolute difference between the corrected and
uncorrected combined results should
be small.

(c) The width of the 2-standard-uncertainty interval
, which is affected by the size of ,

should not be too large.

When all values of in the range of results
, ..., are believed to be equally probable, a

rectangular distribution for with limits
and may be used, where

min{ , ..., } and max{ , ..., }.
The correction and uncertainty specified by
such a rectangular distribution always yield an interval

that includes all results , ..., . This is a
consequence of the property of rectangular distributions
that the interval includes
the entire range of the distribution. However,
the absolute correction and the
width of the 2-standard-uncertainty interval
determined from a rectangular distribution may be
deemed to be too large. A rectangular distribution may
not be unreasonable when is small.

When the values of near the middle of the
range of results , ..., are believed to be more
probable than the values near the ends, a triangular
distribution for with limits
and may be used. The absolute
correction and the width of the interval
determined from a triangular distribution are smaller
than the corresponding specifications from rectangular
distribution. The interval determined from
a triangular distribution may not include all results

, ..., . However, the fraction of results , ...,
included by may be sufficiently large. In
terms of probability, a triangular distribution with limits

and accommodates
the viewpoint that the systematic effects in results

, ..., may be such that about half of the results
are on each side of the value of the measurand. That
is, the value of the measurand is more likely to fall
near the middle rather than towards the ends of the
range of results.

The shortest 2-standard-uncertainty interval
that includes a specified range L, H of results

, ..., , can easily be determined when correction
can be prescribed. For example, may be specified to
be zero or some other small number. The choice of

would depend on (a) the degree of asymmetry of
the distribution of and (b) the percentage change
in the result C that the chosen would imply. Thus,

is specified. Let max{ , }.
Then the interval , where , is the
shortest interval about that includes the specified
range of results L, H . The correction is what
was specified and the uncertainty is equal to
� , provided that > C . In
order to justify such and as being technically
consistent with the ISO Guide, we need to identify a
probability distribution whose expected value is and
whose standard deviation is . Appendix 4 gives
the limits and of rectangular and triangular
distributions that yield a specified and . As the
goal is to specify , , and , the limits
and need not be calculated.

Thus a probability distribution for correction
can be specified such that the 2-standard-uncertainty
interval would include a sufficiently large
fraction of results , ..., , the absolute correction
is small, and the width of the interval is
not too large.

Sometimes the nominal value of the common
measurand is specified in advance. In this case, the
corrected combined result may be adjusted to match
the nominal value . Such adjustment is made by
adding or subtracting a constant from and , ..., .
This does not affect the uncertainties associated with

and , ..., .

4. Key comparison reference value and degree
of equivalence

The KCRV, defined by the MRA [2], is the
reference value (assigned to the common measurand)
accompanied by its uncertainty resulting from a
CIPM key comparison. According to the MRA, in
most cases the KCRV can be considered to be a
close, but not necessarily the best, approximation
of the (corresponding) SI value. The most common
choices for the KCRV are the arithmetic mean or
a weighted mean of the results. We refer to them
as the uncorrected combined result, denoted by C.
The associated standard uncertainty is denoted by

C . According to Assumption II, C and C are
unsatisfactory representations of the information about

provided by results , ..., . Therefore, we suggest
that the corrected combined result and
standard uncertainty � be used
as the KCRV and its associated standard uncertainty,
respectively.

The MRA [2] defines the degree of equivalence
of a measurement standard as the degree to which the
measurement standard (laboratory result) is consistent
with the KCRV. This is expressed quantitatively by the
deviation from the KCRV and the uncertainty of this
deviation. Common choices are: (a) the pair
and ; (b) an uncertainty interval of the type

for some coverage factor ;
and (c) the single value for
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, , ..., , where denotes the standard
uncertainty associated with the deviation for

, , ..., . According to Assumption II, the KCRV
should be with standard uncertainty . Therefore,
we propose the expression as
the degree of equivalence between and . This
expression represents the deviation of from as
a fraction of the standard uncertainty .

According to the MRA [2] the degree of
equivalence between two measurement standards
(two laboratory results) is the difference between
their respective deviations from the KCRV and the
uncertainty of this difference. Common choices are: (a)
the pair and � ;
(b) an uncertainty interval of the type

� for some coverage factor ; and
(c) the single value � for
, , , ..., and . These expressions are

based on only two results, and , with uncertainties
and , respectively, for , , , ...,

and . They ignore the information about
provided by other laboratories. If the authors of the
MRA intended this, it is not clear why they defined
the degree of equivalence as the difference between
their respective deviations from the KCRV rather than
the difference between the results. We propose the
expression
as the degree of equivalence between and for
, , , ..., and .

5. International comparison of cryogenic
radiometers

In order to illustrate the proposed three-step method, we
have re-analysed some of the data from a recent BIPM
Report on a supplementary comparison of cryogenic
radiometers [15], initiated by the CCPR: CCPR-S3.
Altogether seventeen national measurement institutes,
including the BIPM, participated. All seventeen
laboratories are believed to be competent. We briefly
review the method adopted, which is described in detail
in the BIPM Report, in order to identify the data that
we have used for illustration.

The comparison of cryogenic radiometers was
carried out indirectly by means of transfer standard
detectors. The cryogenic radiometer at each laboratory
was used to calibrate the responsivity of a set of
three transfer standard detectors. When a set of
detectors was received from a participating laboratory,
it was compared with a set of continuously monitored
control detectors at the BIPM before being shipped
to the next laboratory. Any changes noticed in the
transfer standard detectors and the effects of different
experimental conditions in the participating laboratories
were accounted for to bring the results reported by
each laboratory to a common basis for comparison.
The overall comparison was organized such that

the independence of measurements from participating
laboratories was maintained.

The relative difference between the responsivity
of a transfer standard detector calibrated at a particular
laboratory and the same detector calibrated at the BIPM
was used as the basis for comparison of cryogenic
radiometers. Each laboratory used at least three out
of six possible wavelengths for laser sources. The
argon line with a wavelength of 514.536 nm was
used by all. The BIPM Report [15, Section 1.3]
denotes the responsivity of a detector calibrated at
laboratory A as A and the responsivity of the same
detector calibrated at the BIPM as BIPM. The relative
difference is defined as ( A – BIPM)/ BIPM.
The relative difference for the three detectors in a set
is averaged. The corresponding uncertainty, denoted by

C in the BIPM Report, combines the relative standard
uncertainties from each laboratory and the uncertainties
associated with the transfer standard detectors. The
BIPM Report (Table 65, columns 6 and 7) displays data
on 104 and C 104 for wavelength 514.536 nm.
These data are reproduced here as Table 1. We have re-
analysed these data. In particular, we treat the data on
the relative differences from the BIPM measurement
as laboratory results , , ..., with associated
standard uncertainties , , ..., . The
relative difference , for the BIPM laboratory,
is defined to be zero. The associated uncertainty

1.0 10–4 represents the uncertainty from
the BIPM uncertainty budget [15, Tables 5 and 6]. This
uncertainty component is also included in the other
sixteen results.

The Birge ratio for the data in Table 1 is
B 1.21. (This is not significantly larger than 1;

the probability of a chi-square distribution with
16 degrees of freedom exceeding

Table 1. Relative differences from the BIPM measurement
for wavelength 514.536 nm and their associated standard
uncertainties, reproduced from the BIPM Report [15],
Table 65, columns 6 and 7.

Laboratory names Relative Standard
and indices difference uncertainty

� 104
� 104

1 PTB.T –0.20 1.30
2 BNM.INM 1.10 1.70
3 CSIRO 2.00 1.40
4 DFM –0.30 2.50
5 ETL 13.10 4.90
6 HUT 1.70 2.70
7 IEN –11.00 6.80
8 IFA 0.00 2.20
9 MSL 0.30 1.30

10 KRISS –5.10 2.40
11 NIST 5.90 3.20
12 NMI-VSL –1.10 2.60
13 NPL 1.30 1.10
14 NRC 5.30 3.40
15 PTB.R 2.90 2.90
16 SP –1.00 5.10
17 BIPM 0.00 1.00
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Table 2. The arithmetic mean A as the uncorrected
combined result, uncertainty A ; correction , uncertainty

; and corrected combined result , uncertainty .
The formulae used for these computations are given in
Appendix 5.

Component Result Standard
uncertainty

Uncorrected combined A 104
A 104

result 0.88 0.76

Correction 104 104

0.12 4.92

Corrected combined 104 104

result 0.99 4.98

times is 10 %.) If we remove the two extreme
results corresponding to laboratories 5 and 7, the Birge
ratio drops to B 1.00. So the results given in Table 1
are consistent according to the Birge ratio test. That is,
no results are discrepant. In particular, results and

are not discrepant.
The BIPM Report investigated the arithmetic

mean, the weighted mean with weights proportional
to the reciprocals of the squared standard uncertainties

, , ..., , and the median of results
, , ..., for common reference. Finally, the

BIPM Report chose the weighted mean as the CCPR
reference value. What does the CCPR reference value
represent? Indeed, what is the common measurand
of value whose estimates are the results ,

, ..., with their respective uncertainties ,
, ..., ? Given results , , ..., , which

are relative differences from the BIPM measurement,
we suggest modus operandi that value may be
defined as the relative difference from the BIPM
measurement that might be realized by any competent
laboratory. One of the objects of the interlaboratory
evaluation is to quantify the worldwide uncertainty
in cryogenic radiometric measurements by competent
laboratories. The standard uncertainty associated with
is a quantitative measure of the worldwide uncertainty
provided by results , , ..., and uncertainties

, , ..., .
Let , , ..., represent the relative

differences for the laboratories that participated in
the international comparison. The random variables

, , ..., represent the states of knowledge
about within the individual laboratories. Following
the ISO Guide, laboratory results , , ..., are
identified with the expected values of , , ..., ,
respectively. The uncertainties , , ...,
are identified with the standard deviations of ,

, ..., , respectively. For illustration, we have
used the arithmetic mean as
the uncorrected combined value. The corresponding
combined result is and the associated
standard uncertainty is A � ,
where . Table 2 gives the computed values
of A and A . Figure 1 plots the laboratory

results , , ..., , the uncorrected combined result
(u.c.r.) A, and the associated 2-standard-uncertainty
intervals. We note that the 2-standard-uncertainty
interval associated with the arithmetic
mean A excludes five, i.e. 29 %, of the seventeen
results , ..., . Also, several other results are on
the borderline. As the excluded results are from
competent laboratories, the result A and the uncertainty

A are unsatisfactory representations of the relative
difference from the BIPM measurement that might be
realized by any competent laboratory. The inadequacy
of A and A can be remedied by incorporating a
correction and the uncertainty associated with it for
possible difference between A and . For illustration,
we have chosen an asymmetric triangular distribution
for the correction denoted by with limits

and . This distribution
represents the belief that a competent laboratory is
more likely to realize a relative difference from the
BIPM measurement in the vicinity of A than far
from A. The corresponding expected value
and the standard uncertainty are given
in Table 2. The formulae used for computing and

are given in Appendix 5. The corrected combined
result A + and the standard uncertainty

� are also given in Table 2.
The result and the uncertainty represent the
distribution of . Figure 3 plots the laboratory results

, , ..., and the corrected combined result (c.c.r.)
, with associated 2-standard-uncertainty intervals. The

centre line is drawn at the corrected combined result
and the dashed lines are drawn at and

, respectively. We note that the 2-standard-
uncertainty interval , associated
with the corrected combined result includes all but

Figure 3. Individual laboratory results and the corrected
combined result A + with associated 2-standard-
uncertainty intervals. Table 1 lists the laboratories
corresponding to indices 1, ..., 17 and c.c.r. stands for
corrected combined result. The horizontal centre line is
drawn at the corrected combined result . The dashed lines
are drawn at the limits and of the
2-standard-uncertainty interval associated with .
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the two extreme results. The 2-standard-uncertainty
intervals associated with the two excluded results
and have substantial intersection with the interval

, . So the corrected combined
result and uncertainty represent better than A

and A the relative difference from the BIPM
measurement that might be realized by any competent
laboratory. That is, and represent the worldwide
uncertainty better than A and A .

It is not unreasonable to set the CCPR reference
value as zero in this example. This can be done by
subtracting the corrected combined result from each of
the results , , ..., . In particular, result from
the BIPM would be adjusted to . The uncertainty

and the degree of equivalence
for , , ..., are unaffected by such adjustment.

If we had used a rectangular distribution for
correction with limits and

, we would have 0.17 10–4,
6.96 10–4, 1.05 10–4, and

7.00 10–4. If we had used a symmetric distribution
for correction with the requirement that the interval

that includes all seventeen results be
the shortest, we would have max{ ,

} 12.22 10–4, 0.88 10–4, and
6.11 10–4.

We noticed certain technical deficiencies in the
analysis of the BIPM Report. They are discussed in
Appendix 6. These deficiencies point to the need for
a generally accepted approach for the data analysis
of interlaboratory evaluations, including CIPM key
comparisons.

6. Summary

We address the problem of determining the combined
result and its associated uncertainty in the measurement
of a common measurand by a group of competent
laboratories. Most data analyses of interlaboratory
evaluations are based on the highly questionable
assumption that the expected values of the individual
laboratory results , ..., are all equal to the value

of the common measurand. This means that the
laboratory results are subject to random effects only
with respect to the value of the measurand. We use
the more realistic assumption that results , ...,
are subject to both random and systematic effects with
respect to the value of the measurand. The value of
the measurand may be anywhere in the range of results

, ..., , or even outside this range when is small.
Therefore, a combined result and its associated standard
uncertainty that place a non-negligible fraction of the
results outside the 2-standard-uncertainty interval are
unsatisfactory representations of the information about

provided by the set of results , ..., and their
associated uncertainties.

Previous efforts to account for the uncertainty
arising from systematic effects are either not consistent

with the ISO Guide or of limited applicability. We
address the general case where the number of
laboratories is arbitrary and the combined result may
be based on the arithmetic mean or a weighted mean.
Following the approach of the ISO Guide in dealing
with systematic effects, we propose a three-step method
to determine a combined result and its associated
uncertainty .

Step 1: Determine the uncorrected combined result
C and its associated standard uncertainty denoted by

C . Assess the need for correcting the result C. We
suggest that the arithmetic mean should be used as the
default uncorrected combined result C. A subjectively
determined weighted mean may be used when justified.
Such would be the case, for example, when one or more
of the results are outliers or some of the self-declared
uncertainties associated with the individual results are
believed to be understatements and the experts choose to
adjust them. Determine the standard uncertainty C

from the uncertainties , ..., associated with
results , ..., using the law of propagation of
uncertainties. Assess the need for correcting result C

for a possible difference between C and the value of
the measurand. Such a correction is needed whenever
the interval C ± C excludes a non-negligible
fraction of the results , ..., .

Step 2: Determine the correction to be
applied to C and the standard uncertainty

associated with the correction. Following the
ISO Guide, a probability distribution is used to
specify correction and its associated uncertainty .
The probability distribution represents belief about
reasonable correction. When all values of in the
range of results , ..., are believed to be equally
probable, a rectangular distribution for may be used.
When the values of near the middle of the range of
results , ..., are believed to be more probable than
the values near the ends, a triangular distribution for
may be used. The limits of the probability distribution
of can be determined from the range of deviations

C , C , ..., C of the results ,
, ..., from the uncorrected combined result C.

Step 3: Determine the corrected combined result
C + and the associated combined standard uncer-

tainty � . With a judiciously
specified probability distribution for correction ,
the 2-standard-uncertainty interval would
include a sufficiently large fraction of results , ..., .
Thus and would represent, better than C and

C , the information about provided by results
, ..., .

When the interlaboratory evaluation is a CIPM key
comparison, we suggest that the combined result
and its associated standard uncertainty determined
by the three-step method be identified with the
key comparison reference value and its associated
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uncertainty. These two quantities can then be used to
specify the degree of equivalence of the individual
results.
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Appendix 1

Terminology of the ISO Guide

Measurand: particular quantity subject to measurement
(ISO Guide, B.2.9). Denoted by .

Result of a measurement: value attributed to a
measurand, obtained by measurement (ISO Guide,
B.2.11). Denoted by .

Uncertainty of measurement: parameter, associated with
the result of a measurement, that characterizes the
dispersion of the values that could reasonably be
attributed to the measurand (ISO Guide, B.2.18).

Standard uncertainty: uncertainty of the result of a
measurement expressed as a standard deviation (ISO
Guide, 2.3.1). Denoted by .

Combined standard uncertainty: determined by com-
bining the individual standard uncertainties (and
covariances as appropriate) using the root-sum-
of-squares method, or equivalent established and
documented methods (based on NIST TN-1297, C.2.2).

Expanded uncertainty: multiple of combined standard
uncertainty; the multiplier is called coverage factor
(based on NIST TN-1297, C.2.3). Denoted by

. The conventional value of the coverage factor
is . The corresponding expanded uncertainty is
referred to as 2-standard uncertainty.

Expanded uncertainty interval: interval defined by
expanded uncertainty about the result of a measurement
that may be expected to encompass a large fraction
of the distribution of values that could reasonably be
attributed to the measurand (based on ISO Guide, 2.3.5).
Denoted by . The expanded uncertainty
interval with coverage factor , i.e.
is referred to as 2-standard-uncertainty interval.

Measurement equation: equation that represents the
value of the measurand as a function of all those
quantities that contribute to the determination of
the corresponding result of measurement and the
associated combined standard uncertainty. All quantities
involved in a measurement equation are treated
as random variables with finite expected values,

variances, and covariances (as appropriate). Each input
quantity of a measurement equation may have its
own measurement equation (based on the website
http://physics.nist.gov/cuu/Uncertainty/basic.html, and
on NIST TN-1297, D.3.1).

Appendix 2

Birge ratio as a statistical estimate

The Birge ratio can be described as a statistical estimate
from the Aitken [18] weighted-least-squares model. The
Aitken weighted-least-squares model is y X e,
where e and e V. Here, y is an

vector of random measurements, X is an
known matrix of rank , is an vector of
unknown parameters, e is an vector of random
errors, is an unknown parameter, and V is an

known positive definite matrix. The “best linear
unbiased estimate” of is b X V X X V y
with variance b X V X . The analysis
of variance (ANOVA) estimate of is y
Xb V y Xb and . When the
distribution of y can be assumed to be multivariate
normal, has a chi-square distribution with

degrees of freedom (see, e.g. Rao [19]).
The Birge ratio model may be written as

, where , ..., are independent random
errors with and for

, ..., . This model is a special case of the
Aitken weighted-least-squares model, where y is the
vector of laboratory results , ..., , X is a vector
of ones , ..., , is , , and V is the
known diagonal matrix, diag , ..., . By
making these substitutions, the “best linear unbiased
estimate” of is with variance

, where for
, ..., and . The ANOVA estimate of

is . Thus the Birge
ratio B � is the ANOVA
estimate of in Aitken weighted-least-squares
model and . When results , ..., can be
assumed to be normally distributed, has a
chi-square distribution with degrees of freedom.
In this case the probability due to random chance of
realizing the Birge ratio as large as observed or larger
can be quantified. Birge [3] called
a measure of “internal consistency” denoted by and
called a measure
of “external consistency” denoted by . He defined

.

Appendix 3

Expected value and standard deviation
of triangular distribution

The probability density function of a random variable
having a triangular distribution on the interval
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is as follows:
, when ;

, when ; and ,
otherwise. Figure 2 shows this probability density
function (p.d.f.). It can be checked that d
, which is the same as saying that the area of

the triangle is one. Simple integration shows that
expected value and

.
Thus, variance and
standard deviation � . Two equivalent
formulae for are and

.

Appendix 4

Limits of rectangular and triangular distributions
for given and

For a rectangular distribution with limits and
, , and

. By solving for and ,
we get � and � . For
a triangular distribution with limits and ,

, and
. Therefore,

. By solving for
and , we get � and

� .

Appendix 5

Formulae used for computations given in Table 2

Uncorrected combined result: .
Standard uncertainty: A � .
Limits of the triangular distribution for correc-

tion : and
, where min{ , ..., } and

max{ , ..., }.
Correction: .
Standard uncertainty: �

.
Corrected combined result: A + .
Standard uncertainty: � .

Appendix 6

Discussion of BIPM Report

In the BIPM Report [15], the uncertainties
, ..., are computed as relative standard

uncertainties but used as absolute standard
uncertainties. In our calculations, we have also
used the uncertainties , ..., as absolute
standard uncertainties. Our calculations show that
the weighted mean is W 0.65 10–4 and the
absolute standard uncertainty is W 0.44 10–4.

We used the formulae W , where
, for , , ..., ,

and . Our calculations
agree with the corresponding results W 0.7 10–4

and W 0.4 10–4 given in the BIPM Report
(Tables 63 and 64). We can, therefore, conclude
that the BIPM Report used the formulae given in
its Sections 5.2.1 and 5.2.2. In these formulae the
uncertainties , ..., are absolute standard
uncertainties. However, Section 4 of the BIPM Report
computes the uncertainties , ..., as relative
standard uncertainties.

The formula used in the BIPM Report for
the uncertainty associated with the median of
results , ..., is unsatisfactory. The BIPM Report
evaluated the uncertainty associated with the median
as 1.9/� times the median of the absolute
deviations of results , ..., from their median. This
formula does not agree with the ISO Guide, which
expresses all uncertainties as standard uncertainties
or their multiples. Also, it assumes that the standard
deviations of results , ..., are equal. The
BIPM Report does not justify this assumption. The
uncertainties , ..., range from 1.00 10–4

to 6.80 10–4. (The calculated value of the test statistic
max{ , ..., } is 0.28. This is
not insignificant, see Pearson and Hartley [20]).

The formula used in the BIPM Report for
the standard uncertainty A associated with
the arithmetic mean A is unsatisfactory. Our
result A 0.88 10–4 agrees with the result

A 0.9 10–4 given in the BIPM Report (Table 63).
But our result A 0.76 10–4 does not agree
with the result 1.2 10–4 given in the BIPM
Report (Table 64). The BIPM Report evaluated the
standard uncertainty associated with the arithmetic
mean as � � � ,
where , ..., are laboratory results. The use of

� as the standard uncertainty A associated
with the arithmetic mean A does not parallel the
approach used by the BIPM Report to evaluate
the standard uncertainty W associated with the
weighted mean W. For W , the BIPM Report
used the formula W � , where

for , , ..., .
This formula reduces to W �
as stated in Sections 5.2.1 and 5.2.2 of the BIPM
Report. The corresponding formula for A is

A � , where for
, 2, ..., . This formula reduces to A

� . For the data in Table 1, A

� 0.76 10–4.
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